KELLER

Series 6LHP

Piezoresistive OEM high-pressure transducers with a wide range of applications

Features

- · High long-term stability
- Robust housing made from stainless steel, Hastelloy or Inconel
- · Front-flush diaphragm welded with no gaps
- High operating temperature up to 150 °C
- · Optimised thermal behaviour

Technology

- · Insulated piezoresistive pressure sensor encapsulated in an oil-filled metal housing
- · Ideal for mounting with O-ring and support ring
- Typical output signal range of 160 mV/mA

Typical applications

- · Oil and gas
- · Oceanology
- · Geology
- Energy sector
- Hydraulics

Accuracy ± 0,25 %FS Long-term stability ± 0,25 %FS / year Pressure ranges 0...100 bar to 0...2000 bar

Electrical Diagram of a 6LHP with compensation resistors

Series 6LHP – specifications

Standard pressure ranges

Absolute pressure	Absolute pressure	Proof pressure		Sensitivity	
PAA	PA		min.	typ.	max.
0100	0100	250	1,20	1,60	2,0
0160	0160	400	0,75	1,00	1,25
0250	0250	625	0,48	0,64	0,80
0400	0400	1000	0,30	0,40	0,50
0600	0600	1500	0,20	0,267	0,333
01000	01000	2200	0,12	0,16	0,20
01600	01600	2200	0,075	0,10	0,125
02000	02000	2200	0,075	0,10	0,125
bar abs.	bar abs.	bar		mV/(mA × bar)	
Reference pressure at 0 bar abs. (vacuum)	Reference pressure at 1 bar abs.	based on reference pressure	The standard pressure ranges are available from the warehouse. C to any intermediate pressure ranges can also be made.		

Performance

Accuracy @ RT (2025 °C)	± 0,25 %FS typ.	Non-linearity (best fitted straight line BFSL), pressure hysteresis, non-repeatability	
Accuracy @ HT (2025 C)	± 0,50 %FS max.		
Offerent @ DT (00 05 %C)	$< \pm 25$ mV/mA	Uncompensated, the sensitivity value must be added for PA	
Offset @ RT (2025 °C)	$< \pm 2 \text{ mV/mA}$	Compensated with R3 or R4	
Compensated temperature range	-1080 °C	Other temperature ranges between -40150 °C are possible as an option	
Long-term stability	≤±0,25 %FS	Per year under reference conditions	
Degree of dependency on location	≤ 2 mbar	Calibrated in vertical installation position with metal diaphragm facing downwards	
	≤ ± 0,025 %FS/K	Zero (TCzero) pre-compensated with R1 or R2	
Temperature coefficient (TC)	≤ ± 0,06 %/K	Sensitivity (TCsens)	
	18003000 ppm/K	Total bridge resistance (TCresistance)	

Electrical data

Half-bridge configuration

Constant current supply	1 mA nominal 3 mA maximum	
Bridge resistance @ RT (2025 °C)	3,5 kΩ ± 20 %	
Electrical connection	Gold-plated pins ø 0,45 mm L = 9 mm ± 0,5 mm	Optional: Silicone wires AWG28, L = 70 mm, other lengths on request
Insulation	> 100 MΩ @ 500 VDC	

Series 6LHP – specifications

Mechanical data

Materials in contact with media

	Stainless steel AISI 316L	Series 6LHP	
Housing and diaphragm	Hastelloy C-276	Series 6LHPH	
	Inconel 718	Series 6LHPI	
	FKM (75 Shore)		
O-ring	ø 10,5 mm × 1,5 mm	Optional: others on request	
	-20200 °C		
	> 100600 bar: PTFE	Installation via O-ring/support ring is not suitable for pressures >1600 bar. We recommend welding the pressure transducer to a housing.	
Support ring	> 6001600 bar: PEEK		
	ø 10,8 mm / ø 13 mm × 1 mm		

Other materials

Sincore on Optional. Others on request	Oil filling sensor	Silicone oil	Optional: others on request
--	--------------------	--------------	-----------------------------

Further details

Diameter × height	ø 13 mm × 8 mm	See dimensions and options	
	approx. 6,3 g	Series 6LHP	
Weight	approx. 6,9 g	Series 6LHPH	
	approx. 6,4 g	Series 6LHPI	

Ambient conditions

Media temperature range	-40150 °C		
Ambient temperature range	-40150 °C	Icing not permitted	
Storage temperature range	-2070 °C		
Vibration endurance	10 g, 102000 Hz, ± 10 mm	IEC 60068-2-6	
Shock endurance	< 50 g, 6 ms	IEC 60068-2-27	
Natural frequency (resonance)	> 30 kHz		
Pressure endurance @ RT (2025 °C)	> 10 million pressure cycles	0100 %FS	
Dead volume change @ RT (2025 °C)	< 2 mm ³	UIUU %F3	

Recommended material selection according to pressure and temperature

KELLER 6LHP series high-pressure transducers are available with various material options. Stainless steel, Hastelloy C-276, Inconel 718 or titanium can be selected (see "Mechanical data") in line with requirements.

The diagram opposite shows the material options available based on pressure and temperature. All the materials mentioned are compatible with pressure ranges up to 1000 bar. Only Inconel is offered above 1000 bar due to its mechanical strength.

KELLER

Series 6LHP – Dimensions and options

Electrical connection

Glass feedthrough connection		Half-open measurement bridge pin assignment			
Ø5,08		PIN	Label	Designation	Wire colour
		1	+OUT	Positive output	red
		2	+IN	Positive supply	black
	B	3	-OUT	Negative output	blue
		4	-IN _{-out}	Negative supply (half bridge -OUT)	yellow
3		5	-IN _{+OUT}	Negative supply (half bridge +OUT)	white

Overview of customer-specific options

- Custom pressure ranges
- Custom temperature ranges between -40...150 °C
- Custom mathematical modeling
- · Electrical connection using silicone wires
- O-rings made of other materials
- · Other oil filling types for pressure transducers: e.g. special oils for oxygen applications
- · Modifications to customer-specific applications

Examples of related products

- Series 7LHP: high-pressure transducer with ø 15 mm and temperature range up to 180 °C
- Series 7LHPTi: high-pressure transducer made from titanium
- · Series 6LHPX: high-pressure transducer 6LHP with digital compensation electronics
- · Series 10LHP: high-pressure transducer with ø 19 mm

Series 6LHP – Analysis and characteristic lines

Standard analysis

The 7LHP are intended for o-ring mounting and depend on the stress isolation provided by o-rings for performance within stated specifications. This installation enables the values measured during factory testing to remain valid. If the transducers are not de-energised when they are installed, the mechanical forces may change the measured values and the stability of the pressure transducers.

Calibration sh	neet: Examp	le type P	A-10L		Key	
PA-10L/10 b; (*) Temp [°C] -9.5 0.1 25.0 50.2 79.9 COMP R1 RB ZERO SENS LIN (*2][bar] 0.000 2.500 5.000 7.500 10.000 COMP R1 RB ZERO SENS LIN (*2][bar] 0.000 2.500 5.000 7.500 1.000 COMP R1 RB ZERO SENS LIN (*2][bar] 0.000 2.500 5.000 7.500 1.000 COMP R1 RB ZERO SENS LIN (*2][bar] 0.000 2.500 5.000 7.500 1.000 COMP R1 RB COMP R1 RB COMP R1 RB COMP R1 RB COMP R1 RB COMP R1 COMP R1 RB COMP R1 COMP R1 RB COMP R1 COMP R1 RB COMP R1 COMP R1 COM	ar/10-1005-1 (*) Zero [mV] 18.5 18.7 19.1 19.8 20.8 510 kOhn 3482 Ohm -0.8 mV (** 16.41 mV/b (**) [mV, 0.0 41.1 82.1 123.1 164.1 123.1 164.1 tability Ok (**) Ok (**) 0 mA (**)	18 ⁽¹⁾ (5)+510 [mV] 13.3 13.1 13.0 12.9 (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	Sn 110754 (*) Comp [mV] -0.6 -0.8 -0.9 -1.1 R3 _atm (*4) Lnorm [%Fs] 0.00 0.02 0.00 -0.02 -0.01 -0.6 -0.8 -0.9 -1.1 R3 _atm	7 ⁽²⁾ (⁷⁾ dZero [mV] 0.2 0.2 0.0 -0.1 -0.2 0.2 0.0 -0.1 -0.2 L1 56.0 Ohm (⁸⁾ 964 bar (¹⁵⁾ Lbfsl [%Fs] -0.01 0.01 0.01 -0.01 -0.01	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20.	Sensor traceability information Insulation test

Notes

- The indicated specifications apply only for a constant current supply of 1 mA. The sensor should not be supplied with more than 3 mA.
- The output voltage is proportional to the current supply (excitation). If the supply deviates from the calibration, signal shifts may occur.
- The compensation resistors described in this data sheet are not part of the pressure transducer and are not included in the scope of delivery.
 Compensation resistors with a temperature coefficient of < 50 ppm/°C must be used in extreme temperatures. The sensor and the resistors can
- be exposed to different temperatures.
 Fine adjustment of zero with R5 potentiometer (20 Ω) is possible. In addition, a maximum TCsens can be guaranteed on request or the value for the compensation resistor (Rp) can be indicated. See «Electrical Diagram of a 6LHP with Compensation» on page 1.

Characteristic lines

Examples of typical characteristic lines of the temperature coefficients, normalised at 25 °C, uncompensated and compensated

KELLER AG für Druckmesstechnik CH-8404 Winterthur Subset → 41 52 235 25 25 Subset → 152 235 25 25 Subset → 152 235 25

KELLER

Series 6LHP – Analysis and characteristic lines

Mathematical compensation model

As an option, the 6LHP series KELLER pressure transducers can be ordered together with a mathematical compensation model.

The compensation model is a mathematical formula that helps to calculate the compensated pressure value of the pressure transducer. Both the pressure signal and the temperature signal of the pressure transducer are incorporated into the calculation. Polynomial functions are used as the basis for this mathematical model.

The pressure transducers are characterised in the factory in order to produce the compensation model. This involves measuring pressure and temperature signals at various pressure and temperature levels. Comparing the measured values with the known pressure and temperature values enables the calculation of the compensation coefficients of the pressure transducer. These compensation coefficients are made available to the customer along with the respective pressure transducer.